Bounded Model Checking

PALLAB DASGUPTA

FNAE, FASc, FIETE, Professor,

Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

BMC outline

Given:

- The specification. For example, a property in formal logic.
- The design, as a finite state machine.
- A bound, k, on length of a run.
 - In bounded model checking, only runs of bounded length *k* or less are considered.
- Translation to SAT:
 - We unfold the negation of the property into Boolean clauses over different time steps
 - We unfold the state machine into Boolean clauses over the same number of time steps
 - We check whether the clauses are together satisfiable

Example: *Priority Arbiter*

Implementation:

Initial state: g1=0, g2=1

Specification:

- When r1 is high, g1 must be asserted for the next two cycles
- In Linear Temporal Logic: $G(r1 \Rightarrow Xg1 \land XXg1)$
- In SystemVerilog Assertion (SVA): r1 |-> ##1 g1 ##1 g1

Example: Priority Arbiter

Implementation:

Transition Relation:

Initial state: g1=0, g2=1

Specification:

• In Linear Temporal Logic:

$$G(r1 \Rightarrow Xg1 \land XXg1)$$

• In SystemVerilog Assertion (SVA):

Negation of specification (counter-example):

In SVA, we look for: (r1 ##1 !g1) or (r1 ##2 !g1)

Strategy: Unfold transition relation one step at a time and check whether a counterexample exists

Variables in Temporal Worlds

Negation of specification:

- In SVA: (r1 ##1 !g1) or (r1 ##2 !g1)

Variable naming convention

Iteration-1: Bound = 2

Negated Property: (r1 ##1 !g1) or (r1 ##2 !g1)

Is there a counter-example of length = 2?

Clauses from Transition Relation:

$$C_1^{1}$$
: $r2^0 \land \neg r1^0 \land \neg g1^0 \Rightarrow$
 $g2^1$

$$C_2^{-1}$$
: r1⁰ \Rightarrow g1¹

Clauses from Initial State:

Clauses from Negated Property:

$$Z^1$$
: $r1^0 \land \neg g1^1$

SAT Check: Is $Z^1 \wedge I \wedge C_1^1 \wedge C_2^1$ satisfiable?

Answer: No, since Z¹ conflicts with C₂¹

Iteration-2: Bound = 3

Negated Property: (r1 ##1 !g1) or (r1 ##2 !g1)

Is there a counter-example of length = 3?

Clauses from Transition Relation:

$$C_1^1$$
: $r2^0 \land \neg r1^0 \land \neg g1^0 \Rightarrow g2^1$

$$C_2^1$$
: $r1^0 \Rightarrow g1^1$

$$C_1^2$$
: $r2^1 \land \neg r1^1 \land \neg g1^1 \Rightarrow g2^2$

$$C_2^2$$
: $r1^1 \Rightarrow g1^2$

Clauses from Initial State:

Clauses from Negated Property:

Z²:
$$(r1^0 \land (\neg g1^1 \lor \neg g1^2)) \lor (r1^1 \land \neg g1^2)$$

SAT Check: Is
$$Z^2 \wedge I \wedge C_1^1 \wedge C_2^1 \wedge C_1^2 \wedge C_2^2$$
 satisfiable?

Yes: Witness:
$$r1^0 = 1$$
, $r1^1 = 0$, $g1^1 = 1$, $g1^2 = 0$, rest are don't cares

Conclusion: We have found a counter-example!!

BMC is a bug hunting method

- We are checking only for bounded paths (paths which have at most k+1 distinct states)
 - So if the property is violated by only paths with more than k+1 distinct states, we would not find a counter-example using bounded model checking
 - If we do not find a counter-example using bounded model checking we are not sure that the property holds
- However, if we find a counter-example, then we are sure that the property is violated since the generated counter-example is never spurious (that is, it is always a concrete counter-example)

Formal Methodology

- Bound on path length k
- Clauses describing the design, M :
 - Initial state: I(s₀)
 - Unrolled transition relation: $\Lambda_{i=0..k-1} \rho(s_i, s_{i+1})$
- Loop clause: $loop_k = V_{i=0..k} \rho(s_k, s_i)$
- [f]_{i,k} means that (negated) property f is true at state s_i
- For a counter-example to exist on the design, (M Λ [f]_{i,k}) must be satisfiable

Translation of properties to clauses – some basic forms

 $[f]_{i,k}$ means sequence f is true at state s_i

##1 f is true at state s_i of a run iff sequence f matches from s_{i+1} on that run. Formally:

$$[##1 f]_{i,k} = (i < k) \wedge [f]_{i+1,k}$$

##[0:m] f is true at state s_i of a run iff sequence f matches from some future state s_i within k steps. Formally:

$$[##[0:m] f]_{i,k} = V_{j=i..m} [f]_{j,k}$$

f[*0:m] is true at state s; of a run iff sequence f matches from all states reachable in k iterations and the run loops

$$[f[*0:m]]_{i,k} = \Lambda_{i=i,m}[f]_{i,k} \Lambda loop_k \quad \text{where} \quad loop_k = V_{i=0,k} \rho(s_k, s_i)$$

These are recursive formulations, allowing the translation of complex sequence expressions